8 research outputs found

    Visualizing Quantum Circuit Probability -- estimating computational action for quantum program synthesis

    Full text link
    This research applies concepts from algorithmic probability to Boolean and quantum combinatorial logic circuits. A tutorial-style introduction to states and various notions of the complexity of states are presented. Thereafter, the probability of states in the circuit model of computation is defined. Classical and quantum gate sets are compared to select some characteristic sets. The reachability and expressibility in a space-time-bounded setting for these gate sets are enumerated and visualized. These results are studied in terms of computational resources, universality and quantum behavior. The article suggests how applications like geometric quantum machine learning, novel quantum algorithm synthesis and quantum artificial general intelligence can benefit by studying circuit probabilities.Comment: 17 page

    The Role of Globalization on CO2 Emission in Vietnam Incorporating Industrialization, Urbanization, GDP per Capita and Energy Use

    Get PDF
    This study examines the impacts of crucial factors associated with Vietnam's socio-economic development including globalization, industrialization, urbanization, energy consumption and GDP per capita on carbon dioxide emission. The 31-year data (from 1985 to 2015) is analyzed by Autoregressive Distributed Lag (ARDL) method, and bound test result denotes the long-run relationship between the carbon dioxide emission and its determinants. The long-run and short-run effects can be assessed by the cointegration among the variables and Error Correction Model (ECM) respectively. We find that energy consumption, industrialization and GDP per capita increase carbon dioxide emission in the long-run while, in contrast, globalization negatively influences it, which implies pragmatic suggestions for policymakers in promoting pertinent strategies for sustainable economic development in Vietnam. Keywords: Energy consumption, Carbon dioxide emission, Globalization JEL Classifications: C32, Q43, Q56 DOI: https://doi.org/10.32479/ijeep.706

    An Aquaculture Water Checker--design and Manufacture

    Get PDF
    A real-time, mobile aquaculture water checker is presented. The configuration of double integrating spheres is developed for simultaneously measuring backward scattering RdR_d, forward scattering TdT_d  and transmitted light TcT_c . Based on Kubelka-Munk model, a set of optical parameters including absorption coefficient μa\mu _a , scattering coefficient μs\mu_s and anisotropy  gg  are calculated. The obtained results for diluted milk standard samples with different milk concentrations and aquaculture water samples with different densities of Psexdo-Nitzschia-delicatissium algae are also reported

    Global, regional, and national burden of chronic kidney disease, 1990–2017 : a systematic analysis for the Global Burden of Disease Study 2017

    Get PDF
    Background Health system planning requires careful assessment of chronic kidney disease (CKD) epidemiology, but data for morbidity and mortality of this disease are scarce or non-existent in many countries. We estimated the global, regional, and national burden of CKD, as well as the burden of cardiovascular disease and gout attributable to impaired kidney function, for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. We use the term CKD to refer to the morbidity and mortality that can be directly attributed to all stages of CKD, and we use the term impaired kidney function to refer to the additional risk of CKD from cardiovascular disease and gout. Methods The main data sources we used were published literature, vital registration systems, end-stage kidney disease registries, and household surveys. Estimates of CKD burden were produced using a Cause of Death Ensemble model and a Bayesian meta-regression analytical tool, and included incidence, prevalence, years lived with disability, mortality, years of life lost, and disability-adjusted life-years (DALYs). A comparative risk assessment approach was used to estimate the proportion of cardiovascular diseases and gout burden attributable to impaired kidney function. Findings Globally, in 2017, 1·2 million (95% uncertainty interval [UI] 1·2 to 1·3) people died from CKD. The global all-age mortality rate from CKD increased 41·5% (95% UI 35·2 to 46·5) between 1990 and 2017, although there was no significant change in the age-standardised mortality rate (2·8%, −1·5 to 6·3). In 2017, 697·5 million (95% UI 649·2 to 752·0) cases of all-stage CKD were recorded, for a global prevalence of 9·1% (8·5 to 9·8). The global all-age prevalence of CKD increased 29·3% (95% UI 26·4 to 32·6) since 1990, whereas the age-standardised prevalence remained stable (1·2%, −1·1 to 3·5). CKD resulted in 35·8 million (95% UI 33·7 to 38·0) DALYs in 2017, with diabetic nephropathy accounting for almost a third of DALYs. Most of the burden of CKD was concentrated in the three lowest quintiles of Socio-demographic Index (SDI). In several regions, particularly Oceania, sub-Saharan Africa, and Latin America, the burden of CKD was much higher than expected for the level of development, whereas the disease burden in western, eastern, and central sub-Saharan Africa, east Asia, south Asia, central and eastern Europe, Australasia, and western Europe was lower than expected. 1·4 million (95% UI 1·2 to 1·6) cardiovascular disease-related deaths and 25·3 million (22·2 to 28·9) cardiovascular disease DALYs were attributable to impaired kidney function. Interpretation Kidney disease has a major effect on global health, both as a direct cause of global morbidity and mortality and as an important risk factor for cardiovascular disease. CKD is largely preventable and treatable and deserves greater attention in global health policy decision making, particularly in locations with low and middle SDI

    Mapping child growth failure across low- and middle-income countries

    Get PDF
    Child growth failure (CGF), manifested as stunting, wasting, and underweight, is associated with high 5 mortality and increased risks of cognitive, physical, and metabolic impairments. Children in low- and middle-income countries (LMICs) face the highest levels of CGF globally. Here we illustrate national and subnational variation of under-5 CGF indicators across LMICs, providing 2000–2017 annual estimates mapped at a high spatial resolution and aggregated to policy-relevant administrative units and national levels. Despite remarkable declines over the study period, many LMICs remain far from the World Health 10 Organization’s ambitious Global Nutrition Targets to reduce stunting by 40% and wasting to less than 5% by 2025. Large disparities in prevalence and rates of progress exist across regions, countries, and within countries; our maps identify areas where high prevalence persists even within nations otherwise succeeding in reducing overall CGF prevalence. By highlighting where subnational disparities exist and the highest-need populations reside, these geospatial estimates can support policy-makers in planning locally 15 tailored interventions and efficient directing of resources to accelerate progress in reducing CGF and its health implications

    Visualizing Quantum Circuit Probability: Estimating Quantum State Complexity for Quantum Program Synthesis

    No full text
    This work applies concepts from algorithmic probability to Boolean and quantum combinatorial logic circuits. The relations among the statistical, algorithmic, computational, and circuit complexities of states are reviewed. Thereafter, the probability of states in the circuit model of computation is defined. Classical and quantum gate sets are compared to select some characteristic sets. The reachability and expressibility in a space-time-bounded setting for these gate sets are enumerated and visualized. These results are studied in terms of computational resources, universality, and quantum behavior. The article suggests how applications like geometric quantum machine learning, novel quantum algorithm synthesis, and quantum artificial general intelligence can benefit by studying circuit probabilities.</p

    An FPGA-based Solution for Convolution Operation Acceleration

    Full text link
    Hardware-based acceleration is an extensive attempt to facilitate many computationally-intensive mathematics operations. This paper proposes an FPGA-based architecture to accelerate the convolution operation - a complex and expensive computing step that appears in many Convolutional Neural Network models. We target the design to the standard convolution operation, intending to launch the product as an edge-AI solution. The project's purpose is to produce an FPGA IP core that can process a convolutional layer at a time. System developers can deploy the IP core with various FPGA families by using Verilog HDL as the primary design language for the architecture. The experimental results show that our single computing core synthesized on a simple edge computing FPGA board can offer 0.224 GOPS. When the board is fully utilized, 4.48 GOPS can be achieved.Comment: 11 pages, 6 figures, accepted to The First International Conference on Intelligence of Things (ICIT 2022
    corecore